Что нужно для пайки микросхем?

Пайка для начинающих

Мои отношения с радио- и микроэлектроникой можно описать прекрасным анекдотом про Льва Толстого, который любил играть на балалайке, но не умел. Порой пишет очередную главу Войны и Мира, а сам думает «тренди-бренди тренди-бренди. ». После курсов электротехники и микроэлектроники в любимом МАИ, плюс бесконечные объяснения брата, которые я забываю практически сразу, в принципе, удается собирать несложные схемы и даже придумывать свои, благо сейчас, если неохота возиться с аналоговыми сигналами, усилениями, наводками и т.д. можно подыскать готовую микро-сборку и остаться в более-менее понятном мире цифровой микроэлектроники.

К делу. Сегодня речь пойдет о пайке. Знаю, что многих новичков, желающих поиграться с микроконтроллерами, это отпугивает. Но, во-первых, можно воспользоваться макетными платами, где просто втыкаешь детали в панель, без даже намека на пайку, как в конструкторе.

Так можно собрать весьма кучерявое устройство.

Но иногда хочется таки сделать законченное устройство. Опять-таки, не обязательно «травить» плату. Если деталей немного, то можно использовать монтажную плату без дорожек (я использовал такую для загрузчика GMC-4).

Но вот паять таки придется. Вопрос как? Особенно, если вы этого никогда раньше не делали. Я, возможно, открою Америку, но буквально несколько дней назад я сам для себя открыл волшебный мир пайки без особого геморроя.

До сего времени мое понимание сути процесса ручной пайки было следующим. Берется паяльник (желательно с жалом не в форме шила, а с небольшим уплощением, типа лопаточки), припой и канифоль. Для запайки пятачка, ты берешь капельку припоя на паяльник, макаешь паяльник в канифоль, происходит «пшшшшш», и пока он идет, ты быстро-быстро касаешься паяльником места пайки (деталь, конечно, должна быть уже вставлена), и после нескольких мгновений разогрева припой должен каким-то волшебным образом переходить на место пайки.

Увы, у меня такой метод работал очень плохо, практически не работал. Детали нагревались, но припой никуда с паяльника не переходил. Очевидно, что проблема была в катализаторе, то есть канифоли. Того «пшшшшш», что я делал, опуская конец паяльник в канифоль, явно не хватало, чтобы «запустить» процесс пайки. Пока ты тащишь паяльник к месту пайки, вся почти канифоль успевает сгореть. Именно поэтому, кстати, мне была совершенно непонятна природа припоя, внутри которого уже содержится флюс (какой-то вид катализатора, типа канифоли). Все равно, в момент набирания припоя на паяльник весь флюс успевает сгореть.

Экспериментальным путем я нашел несколько путей улучшить процесс:

  • Лудить места пайки заранее. Реально, при пайке деликатных вещей, типа
    микросхем это крайне непрактично. Тем более, обычно, их ножки уже
    луженые.
  • Крошить канифоль прямо на место пайки. Аккуратно кладешь кристаллик канифоли прямо на место пайки, и тогда «пшшшшш» происходит прямо там, что позволяет припою нормально переходить с паяльника. Увы, после такой пайки плата вся обгажена черными заплесами горелой канифоли. Хотя она и изолятор, но порой не видно дефектов пайки.Поэтому плату надо мыть, а это отдельный геморрой. Да и само выкрашивание делает пайку крайне медленной. Так я паял Maximite.
  • Использовать жидкой флюс. По аналогии с выкрашиваем канифоли, можно аккуратно палочкой класть капельку жидкого флюса (обычно, он гораздо «сильнее» канифоли), и тогда будет активный «пшшшшш», и пайка произойдет. Увы, тут тоже есть проблемы. Не все жидкие флюсы являются изоляторами, и плату тоже надо мыть, например, ацетоном. А те, что являются изоляторами все равно остаются на плате, растекаются и могут мешать последующей внешней «прозвонке». Выход — мыть.

Итак, мы почти уже у цели. Я так подробно все пишу, так как, честно, для меня это было прорыв. Как я случайно открыл, все, что нужно для пайки несложных компонент — это паяльник, самый обычный с жалом в виде шила:

и припой c флюсом внутри:

Все дело в процессе. Делать надо так:

  • Деталь вставляется в плату и должна быть закреплена (у вас не будет второй руки, чтобы держать).
  • В одну руку берется паяльник, в другую — проволочка припоя (удобно, если он в специальном диспенсере, как на картинке).
  • Припой на паяльник брать НЕ НАДО.
  • Касаетесь кончиком паяльника места пайки и греете его. Обычно, это секунды 3-4.
  • Затем, не убирая паяльника, второй рукой касаетесь кончиком проволочки припоя с флюсом места пайки. В реальности, в этом месте соприкасаются сразу все три части: элемент пайки и его отверстие на плате, паяльник и припой. Через секунду происходит «пшшшшш», кончик проволочки припоя плавится (и из него вытекает немного флюса) и необходимое его количество переходит на место пайки. После секунды можно убирать паяльник с припоем и подуть.

Ключевой момент тут, как вы уже поняли, это подача припоя и флюса прямо на место пайки. А «встроенный» в припой флюс дает его необходимое минимальное количество, сводя засирание платы к минимуму.

Ясное дело, что время ожидания на каждой фазе требует хотя бы минимальной практики, но не более того. Уверен, что любой новичок по такой методике сам запаяет Maximite за час.

Напомню основные признаки хорошей пайки:

  • Много припоя еще не значит качественного контакта. Капелька припоя на месте контакта должна закрывать его со всех сторон, не имея рытвин, но не быть чрезмерно огромной бульбой.
  • По цвету пайка должна быть ближе к блестящей, а не к матовой.
  • Если плата двухсторонняя, и отверстия неметаллизированные, надо пропаять по указанной технологии с обоих сторон.

Стоит заметить, что все выше сказанное относится к пайке элементов, которые вставляются в отверстия на плате. Для пайки планарных деталей процесс немного более сложен, но реален. Планарные элементы занимают меньше места, но требуют более точного расположения «пятачков» для них.

Планарные элементы (конечно, не самые маленькие) даже проще для пайки в некотором роде, хотя для самодельных устройств уже придется травить плату, так как на макетной плате особого удобства от использования планарных элементов не будет.

Итак, небольшой, почти теоретический бонус про пайку планарных элементов. Это могут быть микросхемы, транзисторы, резисторы, емкости и т.д. Повторюсь, в домашних условиях есть объективные ограничения на размер элементов, которых можно запаять обычным паяльником. Ниже я приведу список того, что лично я паял обычным паяльником-шилом на 220В.

Для пайки планарного элемента уже не получится использовать припой на ходу, так как его может «сойти» слишком много, «залив» сразу несколько ножек. Поэтому надо предварительно в некотором роде залудить пятачки, куда планируется поставить компонент. Тут, увы, уже не обойтись без жидкого флюса (по крайне мене у меня не получилось).

Капаете немного жидкого флюса на пятачек (или пятачки), берете на паяльник совсем немного припоя (можно без флюса). Для планарных элементов припоя вообще надо очень мало. Затем легонько касаетесь концом паяльника каждого пятачка. На него должно сойти немного припоя. Больше чем надо, каждый пятачек «не возьмет».

Берете элемент пинцетом. Во-первых, так удобнее, во-вторых пинцет будет отводить тепло, что очень важно для планарных элементов. Пристраиваете элемент на место пайки, держа его пинцетом. Если это микросхема, то надо держать за ту ножку, которую паяете. Для микросхем теплоотвод особенно важен, поэтому можно использовать два пинцета. Одним держишь деталь, а второй прикрепляешь к паяемой ножке (есть такие пинцеты с зажимом, которые не надо держать руками). Второй рукой снова наносишь каплю жидкого флюса на место пайки (возможно немного попадет на микросхему), этой же рукой берешь паяльник и на секунду касаешься места пайки. Так как припой и флюс там уже есть, то паяемая ножка «погрузится» в припой, нанесенный на стадии лужения. Далее процедура повторяется для всех ног. Если надо, можно подкапывать жидкого флюса.

Когда будете покупать жидкий флюс, купите и жидкость для мытья плат. Увы, при жидком флюсе лучше плату помыть после пайки.

Сразу скажу, я ни разу не профессионал, и даже не продвинутый любитель в пайке. Все это я проделывал обычным паяльником. Профи имеют свои методы и оборудование.

Конечно, пайка планарного элемента требует куда большей сноровки. Но все равно вполне реально в домашних условиях. А если не паять микросхемы, а только простейшие элементы, то все еще упрощается. Микросхемы можно покупать уже впаянные в колодки или в виде готовых сборок.

Вот картинки того, что я лично успешно паял после небольшой тренировки.

Это самый простой вид корпусов. Такие можно ставить в колодки, которые по сложности пайки такие же. Эти элементарно паяются по первой инструкции.

Следующие два уже сложнее. Тут уже надо паять по второй инструкции с аккуратным теплоотводом и жидким флюсом.

Элементарные планарные компоненты, типа резисторов ниже, весьма просто паяются:

Но есть, конечно, предел. Вот это добро уже за пределами моих способностей.



Под занавес, пару дешевых, но очень полезных вещей, которые стоит купить в дополнение к паяльнику, припою, пинцету и кусачкам:

    Отсос. Изобретателю этого устройства стоит поставить памятник. Налепили много припоя или запаяли не туда? Сам припой, увы, обратно на паяльник не запрыгнет. А вот отсосом убирается элементарно. Одной рукой разогреваете паяльником место «отпайки». Второй держите рядом взведенный отсос. Как «оттает», нажимаете на кнопку, и припой прекрасным образом спрыгивает в отсос.


Очки. Когда имеешь дело с ножками и проводами, может случиться, что разогретая ножка отпружинит, и припой с нее куда-то полетит, возможно, в глаз. С этим лучше не шутить.

Успехов в пайке! Запах канифоли — это круто!

Как правильно паять?

Советы и рекомендации по правильной пайке

Прежде чем начать рассматривать вопрос: ”Как правильно паять?” Нужно обозначить одно но…

Пайка бывает разная. Нужно понимать, что существует большая разница в методике пайки здоровенного резистора мощностью 2 Ватта на обычную печатную плату и, например, микросхемы BGA на многослойную плату сотового телефона.

Если в первом случае можно обойтись простейшим электрическим паяльником мощностью 40 Ватт, твёрдой канифолью и припоем, то во втором случае потребуется применение таких приборов, как термовоздушная станция, безотмывочный флюс, паяльная паста, трафареты и, возможно, станция нижнего подогрева плат.

Читайте также  Технология пайки медных труб

Как видим, разница существенная.

В каждом конкретном случае нужно выбирать тот метод пайки, который является наиболее подходящим для конкретного вида монтажа. Так для пайки микросхем в планарном корпусе лучше применять термовоздушную пайку, а для монтажа обычных выводных резисторов, крупногабаритных электролитических конденсаторов стоит применять контактную пайку электрическим паяльником.

Рассмотрим простейшие правила обычной контактной пайки.

Для начала начинающему радиолюбителю вполне достаточно освоить обычную контактную пайку простейшим и самым дешёвым электрическим паяльником с медным жалом.

Сперва необходимо приготовить минимальный наборчик для пайки и паяльный инструмент. О том, как подготовить электрический паяльник к работе уже рассказывалось в статье о подготовке и уходе за паяльником.

Многие считают, что для пайки лучше использовать паяльник с невыгораемым жалом. В отличие от медного, невыгораемое жало не требует периодического затачивания и лужения, так как на его поверхности не образуются углублений – раковин.


Выгоревшее жало паяльника
(для наглядности медное жало предварительно обработано напильником).

На фото видно, что край медного жала неровный, а образовавшиеся углубления заполнены застывшим припоем.

Невыгораемое жало у широко распространённых паяльников, как правило, имеет конусообразную форму. Такое жало не смачивается расплавленным припоем, то есть с его помощью на жало нельзя брать припой. При работе таким паяльником припой к месту пайки доставляется с помощью тонкого проволочного припоя.

Понятно, что использовать припой в кусочках или стержнях при пайке паяльником с невыгораемым жалом затруднительно и неудобно. Поэтому тем, кто хочет научиться паять, лучше начинать свою практику с обычного электрического паяльника с медным жалом. Недостатки его использования легко компенсируются такими удобствами, как лёгкость использования припоев в любом исполнении (проволочном, стержневом, кусковом и т.п), возможность изменения формы медного жала.

Электрический паяльник с медным жалом удобен тем, что с его помощью можно легко дозировать количество припоя, которое необходимо донести к месту пайки.

Чистота спаиваемых поверхностей.

Первое правило качественной пайки – это чистота спаиваемых поверхностей. Даже у новых радиодеталей, купленных в магазине, выводы покрываются окислами и загрязнениями. Но с этими незначительными загрязнениями, как правило, справляется флюс, который применяют в процессе пайки. Если же видно, что выводы радиодеталей или медные проводники сильно загрязнены или покрыты окислом (зеленоватого или тёмно-серого цвета), то перед пайкой их нужно очистить либо перочинным ножом, либо наждачной бумагой.

Особенно это актуально, если при сборке электронного устройства применяются радиодетали, бывшие в употреблении. На их выводах обычно образуется тёмный налёт. Это окисел, который будет препятствовать пайке.

Лужение.

Перед пайкой поверхность выводов необходимо залудить – покрыть тонким и ровным слоем припоя. Если обратить внимание на выводы новых радиодеталей, то в большинстве случаев можно заметить, что их выводы и контакты залужены. Пайка лужёных выводов происходит быстрее и качественнее, так как отпадает необходимость в предварительной подготовке выводов к пайке.

Лужение провода и выводов радиоэлементов легко проводить обычным электрическим паяльником с медным жалом. Как известно, при подготовке паяльника к работе также производят лужение медного жала.

Чтобы залудить медный проводник для начала удаляют с его поверхности изоляцию и очищают от загрязнений, если таковые имеются. Затем нужно обработать поверхность пайки флюсом. Если в качестве флюса применяется кусковая канифоль, то медный провод можно положить на кусок канифоли и коснуться провода хорошо прогретым жалом паяльника. Предварительно на жало паяльника необходимо взять немного припоя.

Далее движением вдоль провода распределяем расплавленный припой по поверхности проводника, стараясь как можно лучше и равномернее прогреть сам проводник. При этом кусковая канифоль плавиться и начинает испаряться под действием температуры. На поверхности проводника должно образоваться ровное покрытие оловянно-свинцовым припоем без комочков и катышков.


Лужение медного провода

Расплавившаяся канифоль способствует уменьшению поверхностного натяжения расплавленного припоя и улучшает смачиваемость спаиваемых поверхностей. Благодаря флюсу (в данном случае – канифоли) обеспечивается равномерное покрытие проводника тонким слоем припоя. Также флюс способствует удалению загрязнений и предотвращает окисление поверхности проводников во время прогрева их паяльником.

Прогрев жала паяльника до рабочей температуры.

Перед началом пайки необходимо включить электрический паяльник и подождать, пока его жало хорошо прогреется и температура его достигнет значения 180 – 240°C.

Так как у обычного паяльника нет индикации температуры жала, то судить о достаточном нагреве жала можно по вскипанию канифоли.

Для проверки нужно кратковременно коснуться кусочка канифоли нагретым жалом. Если канифоль плохо плавиться и медленно растекается по жалу паяльника, то он ещё недогрет. Если же происходит вскипание канифоли и обильное выделение пара, то паяльник готов к работе.

В случае пайки недогретым паяльником, припой будет иметь вид кашицы, будет быстро застывать, а поверхность паяного контакта будет иметь шероховатый вид с тёмно – серым оттенком. Такая пайка является некачественной и быстро разрушается.

Качественный паяный контакт имеет характерный металлический глянец, а его поверхность ровная и блестит на солнце.

Также при пайке различных радиодеталей стоит обращать внимание на площади спаиваемых поверхностей. Чем больше площадь проводника, например, медной дорожки на печатной плате, тем мощнее должен быть паяльник. При пайке происходит теплопередача и кроме самого места пайки происходит и побочный прогрев радиодетали или печатной платы.

Если от места пайки происходит существенный теплоотвод, то маломощным паяльником невозможно хорошо прогреть место пайки и припой очень быстро остывает, превращаясь в рыхлую субстанцию. В таком случае нужно либо дольше нагревать спаиваемые поверхности (что не всегда возможно или не приводит к желаемому результату), либо применять более мощный паяльник.

Для пайки малогабаритных радиоэлементов и печатных плат с плотным монтажом лучше использовать паяльник мощностью не более 25 Ватт. Обычно в радиолюбительской практике используются паяльники мощностью 25 – 40 Ватт с питанием от сети переменного тока 220 вольт. При эксплуатации электрического паяльника стоит регулярно проверять целостность изоляции сетевого шнура, так как в процессе работы нередки случаи её повреждения и случайного оплавления разогретыми частями паяльника.

При запаивании либо выпаивании радиодетали с печатной платы желательно следить за временем пайки и ни в коем случае не перегревать печатную плату и медные дорожки на её поверхности свыше 280°C.

Если произойдёт перегрев платы, то она может деформироваться в месте нагрева, произойдёт расслоение или вздутие, отслоятся печатные дорожки в месте нагрева.

Температура свыше 240-280°C является критической для большинства радиоэлементов. Перегрев радиодеталей во время пайки может вызвать их порчу.

При спайке деталей очень важно жёстко их зафиксировать. Если этого не сделать, то любая вибрация или смещение нарушит качество пайки, так как припою требуется несколько секунд для того чтобы затвердеть.

Для того чтобы качественно производить пайку деталей “на весу” и избежать смещения или вибрации во время остывания паяного контакта можно использовать приспособление, которое в быту радиолюбителей называется “третья рука”.

Такое нехитрое устройство позволит не только легко и без особых усилий производить пайку деталей, но и избавит от ожогов, которые можно получить, если придерживать детали во время пайки рукой.

«Третья рука» в работе

Меры безопасности при пайке.

В процессе пайки довольно легко получить пусть и небольшой, но ожог. Чаще всего ожогам подвергаются пальцы и кисти рук. Причиной ожогов, как правило, является спешка и плохая организация рабочего места.

Нужно помнить, что в процессе пайки не стоит прикладывать больших усилий к паяльнику. Нет смысла давить им на печатную плату в надежде быстрого расплавления паяного контакта. Нужно дождаться, когда температура в месте пайки достигнет необходимой. В противном случае возможно соскальзывание жала паяльника с платы и случайное касание раскалённым металлом пальцев рук или ладони. Поверьте, ожоговые раны очень долго заживают !

Также стоит держать глаза подальше от места пайки. Нередки случаи, что при перегреве печатная дорожка на плате отслаивается с характерным вспучиванием, что ведёт к разбрызгиванию мельчайших капелек расплавленного припоя. Если есть защитные очки, то стоит применить их. Как только будет получен достаточный опыт пайки, то от защитных очков можно отказаться.

Производить пайку желательно в хорошо проветриваемом помещении. Пары свинца и канифоли вредны для здоровья. Если нет возможности проветривать помещение, то стоит делать перерывы между работой.

Как выбрать паяльник для микросхем и других радиодеталей

Практически вся современная аппаратура имеет печатные платы, на которых установлены различные мелкие радиоэлементы, электронные компоненты, микросхемы. Иногда поломку устранить легко. Надо заменить, например, сгоревший резистор, вздувшийся электролитический конденсатор или вышедшую из строя микросхему. Все это можно заменить самостоятельно, но в последнем случае нужен будет паяльник для микросхем. Как его выбрать, по каким параметрам, и будем обсуждать тут.

Инструмент для пайки радиодеталей

Чем отличается паяльник для микросхем от обычного? Например, от того, который применяется для пайки проводов? Тем что большая мощность и температура не нужна. Вернее, не просто не нужна, а вредна. Некоторые детали на платах от перегрева могут выйти из строя. Те же микросхемы, светодиоды. Поэтому их при демонтаже/монтаже стараются как можно меньше нагревать. Лучше — точечно, только выводы, старясь при пайке как можно меньше нагревать «тело» детали. А это возможно только с небольшой мощностью и тонким жалом. Поэтому выбирать паяльник для микросхем надо по другим критериям.

Выбрать паяльник для микросхем не та уж сложно

Для того чтобы припаять или выпаять радиодетали с плат, используют:

  • Маломощные паяльники с тонким жалом.
  • Паяльные станции.
  • Паяльный фен.
  • Паяльники с отсосом олова (на картинке ниже справа).

Если вам нужен инструмент для нечастого домашнего использования, смотрите в сторону паяльников. Можно выбрать очень неплохой и удобный по вполне бюджетной цене. Можно даже несколько штук купить — разной мощности, с различной формой рукоятки. Они недорогие, так что можно экспериментировать, подбирая оптимальную модель под собственные нужды.

Читайте также  Холодная пайка меди

Виды паяльников для микросхем

Паяльные станции и фены, модели с оловоотсосом — это уже профессиональное оборудование по соответствующей цене. Они, конечно, хороши, но если дорогостоящее оборудование будет простаивать, это нерационально.

Бюджетная паяльная станция Lukey-702 — хороший выбор даже для профессионалов

Есть еще газовые паяльники. Для плат они не слишком удобны, так как подача газа зависит от температуры. Во время работы приходится все время регулировать пламя, чтобы не перегреть. В общем, к работе газовым паяльником надо приноровиться и не факт, что вам понравится. Он незаменим там, где нет электричества, но для мелких деталей не слишком удобен.

Критерии выбора хорошего паяльника для микросхем

Если вам нужен пыльник для микросхем, выбирать надо по следующим критериям:

  • Мощность 20-35 Вт. Учтите, что мощнее в данном случае не значит лучше. Хорошо, если есть возможность плавной или хотя бы ступенчатой регулировки мощности. Она пригодится при работе с разными электронными и радиоэлементами.
  • Съемные жала. Очень удобно, так как можно подбирать нужной формы наконечник или диаметр стержня.
  • Легкая удобная ручка. Один из важных моментов: рука не должна греться, иначе работать будет некомфортно.
  • Функция термостабилизации. Для пайки микросхем это совсем не излишество. Паяльники без стабилизации температуры перегреваются, так что можно спалить деталь. Для начинающих радиолюбителей лучше, если есть стабилизатор. Правда, такие паяльники стоит уже будут не совсем бюджетно.

Паяльник с регулировкой мощности и паяльник с регулировкой температуры (термостабилизацией) — это не одно и то же. Во втором случае существует обратная связь и система управления удерживает выставленную температуру.

Популярностью у профессионалов пользуется японский паяльник с термостабилизацией Goot PX-201, но стоимость соизмерима со стоимостью бюджетной паяльной станции.

Японский паяльник Goot PX-201 — отличный выбор по разумной цене. Разработан специально для тех пользователей , которые хотят иметь качественный и простой , но многофункциональный инструмент. Электронная система управления температурой размещена внутри рукоятки паяльника

Подробный обзор Goot PX-201 смотрите в видео.

Поскольку Goot PX-201 весьма популярен, появились многочисленные китайские клоны.

Китайские паяльники с регулируемой температурой и жидкокристаллическим дисплеем. На Aliexpress могут стоить менее 10$ за штуку

Если у вас нет возможности купить японский паяльник Goot PX-201, неплохой альтернативой может стать CXG 936d, обзор которого в видео ниже.

Если вы остановили свой выбор на CXG 936d, то имеет смысл покупать его в составе набора для пайки радиодеталей. Вам не придется отдельно покупать сменные жала, пинцеты, оловоотсос и припой.

Паяльник CXG 936d в составе набора для пайки. Набор содержит все необходимое для домашнего мастера. Средняя стоимость на Aliexpress составляет 25$

Покупка одного дорого, но универсального и качественного паяльника, позволит избежать необходимости собирать коллекцию.

Коллекция может быть немаленькой

Выше приведен список требований к паяльнику для микросхем. При крайне ограниченном бюджете отказаться можно от регулировки мощности (купить два паяльника разной мощности будет дешевле) и от термостабилизации. Поддержание стабильной температуры в паяльнике для микросхем — желательно. Но при признаках перегрева можно отключать паяльник, хоть это далеко не так удобно и, при отсутствии опыта, некоторое количество деталей вы все-таки спалите.

Один из паяльников с регулировкой температуры

Тем, кто намерен серьезно заниматься радиоделом или ремонтом радиоаппаратуры, весьма будет полезна возможность регулировки температуры. Это поможет подобрать оптимальный режим для каждого радиоэлемента.

Есть еще один момент: микросхемы и другие элементы печатных плат можно паять паяльником на 220 В . Если работать придется с SMD элементной базой, паять светодиоды, кристаллы, лучше брать мини-паяльники на 36 В, 12 В или те, которые питаются от USB порта. Их еще называют игла-паяльник, паяльник-ручка, паяльник-карандаш. Они очень маленькие, отсюда и такие ассоциации. Для мелких элементов — то что нужно.

Выбор нагревательного элемента

В паяльнике в металлической части корпуса расположен нагревательный элемент. Для любительского использования можно и не обращать внимания на такие тонкости. Но, если вы привыкли выбирать оптимальный инструмент, это будет важно. Нагреватель в паяльнике может быть:

  • Из нихромовой спирали. Это самые дешевые модели. Недостаток — паяльник долго греется, да и быстро перегорает. Но, в общем, для бытового использования нормальный бюджетный вариант.
  • Керамический нагреватель. Быстро нагревается, долго служит. Но, стоит намного дороже, от удара может лопнуть, жала должны быть под конкретную модель, что очень неудобно.

Керамический паяльник всем хорош, кроме цены (в среднем, в три раза выше нихромового)

Какие можно сделать выводы? Если вам нужен паяльник для микросхем и других радиодеталей для «домашнего» применения, стоит брать либо спиральный, либо керамический нагреватель. Они стоят немного, так что даже при выходе из строя их заменить не проблема.

Выбираем жала

Жала из меди для пайки микросхем и SMD компонентов подходят плохо. С ними можно работать, но чистая медь быстро окисляется, приходится зачищать почти каждые 30 секунд. И это еще не все. Для мелких деталей рабочий край обычно затачивают тонко, но медь очень быстро изнашивается. Так что приходится не только чистить, но и затачивать часто. Это быстро надоедает.

Более практичны так называемые необгораемые жала. Это та же мель, но покрытая слоем никеля. Такие жала действительно не обгорают, но вот взять на кончик жала каплю припоя не получится. Она на никель «не берется». Паяльник для микросхем с никелированным жалом удобно применять чтобы выпаять компоненты. Им хорошо прогревать.

Две наиболее популярные формы заточки жала для пайки микросхем и других радиодеталей

Если надо припаять паяльником с никелированным жалом, придется вводить припой, держа его в другой руке. Есть, правда, другой способ, который с необгораемым жалом работает «на ура». Нужно предварительно разогреть площадку, на которой будете паять деталь, расплавить и ввести припой (пока без элемента), аккуратно его расположив в нужном месте. То есть держать припой во время пайки уже нет необходимости. Он уже есть в зоне пайки. Остается его разогреть, ввести элемент, выровнять. Когда он уже на месте, остается только пропаять оставшиеся ножки.

Есть еще медные жала для паяльника с серебряным покрытием. На него отлично цепляется расплавленное олово, так что с этой стороны проблем нет. Но стоят такие запасти совсем немало, а серебро выгорает быстро. Так что это не самый оптимальный вариант. Есть лучший — комбинированные жала для паяльников. Большая их часть покрыта никелем, а кончик более дорогими металлами. Получается не так дорого, но удобно работать.

Существуют еще алюминиевые жала. Они не обгорают, но паяльников с плоским жалом из алюминия просто нет. А для пайки микросхем обычно такие используют. Так что приходится отдельно покупать либо алюминиевое жало с «лопаткой», либо медное, покрытое слоем алюминия. Неплохой вариант, но неэкономный. И вообще, паяльник для микросхем с алюминиевым жалом — это скорее исключение, но надо пробовать. Лучший вариант у каждого свой, индивидуальный.

Некоторые мелочи

Как известно, именно мелочи делают инструмент удобным. Так вот, паяльник для микросхем должен быть с длинным мягким проводом. Купить можно и с жестким, но лучше заменить на мягкий провод — работать будет намного удобней. И такой момент: в месте крепления к паяльнику на шнуре должна быть дополнительная защита, которая предотвращает от перетирания и заломов.

Даже рукоятку подобрать не так просто

Паяльник для микросхем надо выбирать по ручке. Если это пластиковая ручка, пластик не должен быть шершавым, грани — гладкие. Некоторым удобно, если на конце ручки имеется раструб. В него упираются пальцы, держать инструмент удобнее.

Еще. Паяльник надо на что-то ставить. Нужна подставка для паяльника и небольшая емкость из металла для олова, канифоли. Самая простая подставка — кусок доски с вбитыми гвоздями или изогнутой проволокой.

Самая элементарная самодельная подставка под паяльник

Чем паять BGA платы

При работе с очень мелкими деталями обойтись малой кровью не получится. BGA компоненты паяют исключительно инфракрасными или термовоздушными паяльными станциями. Более удобны в работе инфракрасные, но они дороже. Значительно дороже, так что часто приходится мириться с шумом от работы термовоздушных паяльников.

Как избавиться от статики

При пайке микросхем или SMD компонентов схем необходимо избавляться от статического электричества. Таким разрядом они запросто пробиваются. Потому при работе часто на стол кладут металлическую заземленную пластину, применяют инструмент с антистатическим покрытием. Металл на столе не всех радует, заменить его можно антистатическим ковриком или покрытием. Они есть в магазинах, торгующих электронными деталями.

Со статическим электричеством надо быть осторожнее

Паяльники, кстати, тоже бывают с антистатическим корпусом. Это неплохо, но модели недешевые. Проблему можно решить и по-другому — уровняв потенциал. Для этого все действующие элементы надо соединить между собой медным проводником. «Все элементы» — это и вы, и паяльник, и плата. Все надо соединить одним проводом — обмотать. Проводник берем с хорошим запасом длины, чтобы не сковывал движения. А еще перед началом работы с электроникой снимаем шерстяные и синтетические вещи и руками прикасаемся к металлу. Можно — к заземленным элементам, но необязательно.

Флюс и припой для пайки микросхем

Припоев очень много. Оптимальный выбирается, снова-таки, опытным путем. Так как зависит и от паяльника и от его владельца. При выборе только обращайте внимание на область применения. Тугоплавкие вам не нужны, так что в описании должно быть указано, что их можно применять для пайки радиодеталей, электронных компонентов.

Не следует применять слишком едкие флюсы. Если просто так использовать кислоту, она дорожки разъест через год. Ее стоит использовать при пайке алюминия. И то, после работы необходимо тщательно удалить остатки. Для работы с обычными радиодеталями часто применяют ЛТИ-120, для пайки SMD компонентов удобнее паяльная паста. И не забывайте, что любой флюс надо удалять после пайки. Чем и как — написано на каждой емкости. Часто используют технический спирт, некоторые растворители.

Какие флюсы использовать для пайки микросхем

Пайка миниатюрных компонентов (микросхем, в частности) широко распространена среди любителей сборки электронных изделий и самодельных гаджетов, желающих изготовить их своими руками.

Для приобретения навыков по формированию надёжного неразъёмного соединения по этому методу, прежде всего, потребуется освоить в полном объёме основные приёмы обращения с нагревательным пробором (паяльником). Во-вторых, надо изучить особенности и порядок выбора расходных материалов (припоя, а также флюса для пайки микросхем).

Для печатных плат под микросхемы

Согласно действующим стандартам используемые при пайке микросхем расходники должны обладать относительно низким температурным показателем плавления, а также иметь малую удельную массу.

Лишь при соблюдении этих условий удаётся достичь требуемого проникновения флюса вглубь вещества соединяемых материалов, обеспечивая при этом заданную прочность паяного соединения.

Несущим основанием для миниатюрных радиоэлементов (микросхем) являются специальные платы из текстолита заводского или самостоятельного изготовления. Использование заранее подготовленных печатных плат обеспечивает удобство и компактность пайки электронных схем, оформленных в виде самостоятельного узла или блока.

Контактные дорожки таких оснований изготавливаются методом напыления меди на пластину из стеклотекстолита (гетинакса), так что ножки микросхем при пайке соединяются именно с этим металлом.

Таким образом, специальный флюс для пайки плат должен обладать универсальными свойствами, обеспечивая идеальный контакт ножек микросхемы с медными проводниками.

Отечественной промышленностью освоен выпуск нескольких образцов таких флюсов, некоторые из них поступают в продажу в пластиковой герметичной упаковке ёмкостью около 30-ти миллилитров.

Этот универсальный расходный материал является классическим образцом низкотемпературной органической смеси, используемой для пайки микросхем феном или с помощью паяльника. Один из производителей современных безотмывочных флюсов для пайки микросхем – CyberFlux. Широко известен флюс СКФ.

Среди иностранных производителей можно выделить MECHANIC, Amtech, KINGBO, MARTIN. Они отличаются ценой и объемом, есть некоторые различия в составе марок.

При работе с готовым флюсом, состоящим из этилового спирта и специальных катализирующих добавок, создаваемая в зоне спайки температура не превышает 110-300 градусов. Указанная нейтральная смесь может применяться как при ручном, так и при автоматизированном (поточном) методе пайки элементов.

Чем смывать

Для смывки флюса по завершении пайки микросхемы рекомендуется применять любой подходящий для этих целей растворитель, посредством которого можно убрать разводы и следы нейтрального состава.

Чаще всего для удаления остатков флюсового состава после пайки используются следующие популярные виды растворителей:

  • чистый технический или медицинский спирт;
  • обычный ацетон (или его смесь с другими химическими веществами);
  • спиртосодержащие парфюмерные составы (хотя их применять нежелательно).

В продаже имеются специальные «отмывки» для удаления флюса с плат, при изготовлении которых (за небольшим исключением) используются те же составляющие.

Очищать платы всеми перечисленными выше составами рекомендуется в следующей последовательности.

Сначала берётся кусочек чистой мягкой фланели, который затем смачивается в небольшом количестве жидкого растворителя (из состава рассмотренных ранее смесей).

На завершающей стадии очистки участок микросхемы с использованным флюсом тщательно протирается смоченной ранее тряпочкой, которая хорошо отмоет все оставшиеся на нём следы и разводы. После того, как обработанные места полностью высохнут – можно будет приступать к их покрытию защитным лаком.

Изготавливаем своими руками

Для самостоятельного изготовления флюса следует приготовить порядка 20-ти грамм растёртой в порошок канифоли, которая затем разводится в 40 граммах чистого технического спирта.

После смешения компонентов и встряхивания ёмкости со смесью порошок начнёт быстро растворяться в спирту и через некоторое время окончательно переходит в жидкую фазу.

В качестве ёмкости под самодельный флюс для пайки микросхем удобнее всего использовать небольшой хорошо вымытый стеклянный пузырёк. Подойдет емкость из-под лака, в пробку которой уже встроена кисточка для нанесения состава.

Этот вариант выбора ёмкости хорош также тем, что специальная заворачивающаяся пробка позволяет содержать смесь в условиях повышенной герметичности, что обеспечивает её хорошую сохранность.

В заключительной части обзора отметим, что порядок выбора флюсового состава и смывки для него определяются условиями предстоящих работ, а также зависят от особенностей контактных площадок и микросхем, подлежащих пайке.

Паяльники для микросхем: выбираем лучший

Паяльниками для микросхем, называются маленькие легкие паяльники с тонким жалом. Таким миниатюрным аппаратом легко делать аккуратную пайку тонких проводков и при этом не сжечь микросхему.

Чем он отличается от других

Паяльник для микросхем должен соответствовать по своим рабочим параметрам требованиям столь специфичной работы. Дело в том, что пайка микросхем требует большей аккуратности и точности, чем конденсаторы, резисторы и другие навесные радиоэлементы. Становится очень важно не перегреть материал и избежать негативного воздействия статического электричества, когда начинаешь работу с некоторыми типа транзисторов и микросхем.

Вообще настоятельно рекомендуем прочитать статью о том как правильно паять. Т.к. есть свои тонкости в работе, а из-за какой-нибудь глупости, можно испортить всю плату и микросхемы.

Технические требования

Давайте разберемся, каким должен быть подходящий паяльник для микросхем, каковы технические характеристики и требования к нему и на что нужно обратить внимание при выборе.

    1. Конструкция нагревательных элементов паяльника имеет второстепенное значение и должна выбираться исходя из режима работы с инструментом. Так, например, паяльники со спиралями требуют большего времени для разогрева и остывания и, скорее всего, подойдут для продолжительного монтажа. Паяльники с керамическими нагревателями отличаются быстродействием – быстро поднимают температуру до рабочей, однако подвержены механическим повреждениям и менее долговечны. Для электротехника с небольшим стажем работы лучше выбрать для работы с микросхемами модель со спиральным нагревателем из средней ценовой категории. По технологии нагревания стержня или спирали лучшими по соотношению качества и функциональности считаются электрические устройства.
    2. Мощность. Для пайки микросхем рекомендуется использовать маломощный мини паяльник до 10 Вт. Чем ниже будет этот показатель, тем проще и безопаснее будет работа. Оставьте мощные модели для опытных монтажников, а для первых опытов в радиоэлектронном ремонте лучше выбрать устройство с мощностью около 4 Вт. Это снизит вероятность порчи контактов в результате слишком долгого проведения по ним нагретым жалом. Мощный инструмент может оказаться нужным только для отпаивания вышедшей из строя микросхемы. Эту операцию лучше всего проводить с помощью жала в форме лопатки, прогревая по несколько выводов одновременно. При выборе конкретной модели отдайте предпочтение тем приборам, которые оснащены терморегулятором.
    3. Мини паяльник для микропайки не должен получать от источника питания ток высокого напряжения. Так, например, бытовая 220В электросеть будет создавать сильные искажающие наводки, способные вывести микросхему из строя. Для пайки таких чувствительных элементов лучше всего использовать блок питания с понижающим преобразователем до 36В или 12В. На сегодня не составит сложности выбрать подходящее оборудование, так как блоки, как правило, входят в комплектацию паяльников.
    4. Паяльник для микросхем должен иметь тонкое жало, оптимально – не более 3 мм. Точно и аккуратно пропаять схему инструментом с большим сечением будет очень сложно – расстояние между выводами, как правило, составляет меньше миллиметра, и избежать случайного соединения будет очень сложно. Безусловно, имеет значение и форма жала, для пайки контактов чаще всего выбирают варианты со скошенным наконечником. Чтобы вам во время покупки не мучиться с тем, какой наконечник сможет выполнять все необходимые задачи, базовая комплектация большинства современных моделей выключает не менее 2 запасных жал.
    5. Стойкость жала – это еще одна характеристика, оказывающая непосредственное влияние не только на процесс и результат пайки, но и на эксплуатацию самого прибора. Конечно, лучше всего выбрать модель с термостойким материалом, однако следует всегда соблюдать баланс между ценой и качеством и задавать себе вопрос о целесообразности приобретения – жало должно максимально точно соответствовать специфике работы.

Обратите внимание, что паяльники могут использоваться только для пайки микросхем с планарными выводами, на которых ножки элементов располагаются по сторонам от корпуса. Для пайки BGA микросхем, где контакты располагаются под корпусом элементов, паяльники не подходят, здесь следует использовать более сложное оборудование.

Стоит ли покупать паяльную станцию?

Нередко можно услышать, что профессионалы используют в своей работе паяльные станции с полным набором необходимых дополнительных инструментов – блоком регулировки температуры и параметров питания, набором припоя, флюсов и т.д. Действительно, такой многофункциональный комплект подходит для выполнения пайки любой сложности, однако и стоит он во много раз дороже, чем маленький паяльник, который и необходим начинающему ремонтнику. Если планируется регулярно проводить пайку микросхем с различными характеристиками, то, конечно, без хорошего комплекта оборудования не обойтись. Но для периодического домашнего использования это не имеет смысла. В данной ситуации лучше дорогой мини паяльник, чем дешевая паяльная станция.

Стоимость

В ассортименте большинства электротехнических магазинов представлены модели средней мощности (15В – 40В), которые относительно сложно использовать для пайки микросхем. Несмотря на это, найти подходящий паяльник небольшой мощности не составит труда, необходимо лишь определиться, с какой суммой вы готовы расстаться ради прибора. Самые дешевые модели обойдутся в 300 рублей, но они не отличаются высоким качеством и рабочим ресурсом. Впрочем, дорогие сугубо профессиональные инструмента за 6-7 тысяч рублей тоже нам не подходят – как ни старайся, а оправдать стоимость такого аппарата при домашней эксплуатации будет очень сложно. Оптимальный вариант – устройство за 1000-1500 рублей с терморегулятором, набором сменных жал и рукояткой из изоляционного материала.

Дополнительный инструмент

Пайка микросхем не может быть проведена с использованием одного только паяльника, требуется небольшое количество дополнительных приспособлений, о наличии которых также следует позаботиться еще на этапе покупки прибора:

      • пинцет для поддевания и оттягивания плат и схем;
      • миниатюрные кусачки для обрезания выводов элементов, проводков и удаления изоляции;
      • напильник для ухода за поверхностью жала (очистка и лужение);
      • полая игра (от шприца) со спиленным острием – для нанесения на рабочую поверхностью флюса;
      • шило с тонким стержнем;
      • острый нож с тонким полотном (канцелярский).

Не забудьте также подготовить рабочее место. Уберите все мешающие предметы и поставьте яркую настольную лампу – ничего не должно мешать уверенному обзору и движениям.