Химико-термическая обработка стали

Pereosnastka.ru

Обработка дерева и металла

Для стальных изделий применяется химико-термическая обработка. Она заключается в том, что поверхностные слои изделий при одновременном действии различных химических реагентов и высокой температуре насыщаются углеродом, азотом и другими элементами. Цель такого насыщения — увеличение твердости поверхностного слоя с сохранением вязкой сердцевины изделия, повышение устойчивости его против коррозии, приобретение новых декоративных свойств, а также жаростойкости, сопротивление износу, истиранию и т. п.

Этот процесс основан на способности различных элементов в момент своего выделения из соединений в атомарном состоянии проникать (диффундировать) в поверхностные слои стали и насыщать их. Различают следующие основные виды химико-термической обработки: цементация; азотирование; цианирование; алитирование; силицирование; диффузное хромирование.

Цементация — это поверхностное науглероживание стали. Она применяется в тех случаях, когда изделие должно иметь твердую поверхность при вязкой сердцевине. Цементация основана на свойстве железа поглощать углерод при высокой температуре.

Цементации подвергают малоуглеродистые стали с содержанием углерода не выше 0,2%, а также легированные стали с содержанием никеля, хрома и других веществ.

Азотирование (нитрирование) представляет собой процесс насыщения поверхностного слоя стальных и чугунных изделий азотом. Азотирование углеродистых сталей применяется главным образом для повышения коррозионной стойкости.

Цианирование — процесс одновременного насыщения стали углеродом и азотом, которые повышают коррозионную стойкость и твердость изделий. Совместное действие углерода и азота ускоряет этот процесс по сравнению с цементацией.

Алитирование — процесс диффузного насыщения поверхности стальных и чугунных изделий алюминием. Оно применяется для повышения жаростойкости до 900—950°С благодаря образованию на поверхности защитной пленки из окиси алюминия.

Силицирование повышает твердость и коррозионную стойкость изделий. Оно заключается в насыщении поверхностного слоя стальных изделий кремнием.

Диффузное хромирование значительно повышает коррозионную стойкость, твердость, сопротивление износу и жаростойкость.

Химико-термическая обработка состоит в насыщении поверхностных слоев изделия тем или иным полезным элементом. Адсорбция и диффузия этого элемента протекает при повышенной температуре из среды, окружающей изделие. Такая среда, богатая насыщающим элементом, носит название цементирующей.

Все способы химико-термической обработки по характеру влияния на свойства материала можно подразделить на две большие группы.
1. Упрочняющая химико-термическая обработка, включающая цементацию углеродом, азотирование, цианирование, диффузионное хромирование, борирование сталей.
2. Химико-термическая обработка с целью повышения жаростойкости и коррозионной стойкости при обычных температурах, включающая алитирование, хромирование, силицирование и другие.

Элемент, которым насыщается изделие при химико-термической обработке, должен быть в активном атомарном состоянии. Азот воздуха, находящийся, как известно, в молекулярном состоянии, непригоден для азотирования стали. Для цементации стали нельзя использовать вещества, которые не претерпевают реакций, сопровождающихся выделением углерода в атомарном виде.

Поэтому, как правило, насыщение при химико-термической обработке происходит при участии газовых фаз, способных выделять насыщающий элемент в атомарном состоянии.

Цель химико-термической обработки — получение поверхностного слоя стальных деталей, обладающего повышенной твердостью, износоустойчивостью, жаростойкостью или коррозионной стойкостью. Для этого нагретые детали подвергают воздействию среды, из которой путем диффузии (проникновения) в поверхностный слой деталей переходят некотррые элементы (углерод, азот, алюминий, хром, кремний и др.).

Поглощение таких элементов протекает лучше всего, когда диффундирующий элемент выделяется в атомарном состоянии при разложении какого-либо соединения. Подобное разложение легче всего происходит в газах (в летучем состоянии), поэтому их и стремятся применять для химико-термической обработки стали. Выделившийся при разложении активизированный атом элемента проникаете решетку стали и образует или твердый раствор, или химическое соединение.

Наиболее распространенными видами химико-термической обработки стали являются: цементация, азотирование, цианирование.

Цементация. Цементацией называется процесс поглощения поверхностным слоем стали углерода с целью получения (после закалки) детали с твердой поверхностью и вязкой сердцевиной.

Цементации подвергают такие детали, которые работают одновременно на истирание и на удар.

Существуют два вида цементации: цементация твердым карбюризатором (науглероживателем) и газовая цементация.

При цементации твердым карбюризатором применяют древесный уголь в смеси с углекислыми солями — карбонатами (Na2C03, ВаС03 и др.), которые при нагревании легко распадаются с выделением углекислого газа (С02). Количество карбонатов в карбюризаторах колеблется обычно в пределах от 20 до 40%.

Цементации подвергают детали из углеродистой или легированной стали с содержанием углерода от 0,2%. Такое содержание углерода обеспечивает высокую вязкость сердцевины после цементации и, следовательно, хорошее сопротивление динамической нагрузке.

Детали помещают в железные цементационные ящики и засыпают карбюризатором.

Атомарный углерод диффундирует в поверхностный слой, вследствие чего содержание его в аустените повышается.

Та ким образом, действительным цементирующим веществом при цементации твердым карбюризатором является окись углерода (СО).

Поверхности, не подлежарие цементации, изолируют от карбюризатора нанесением на них специальных обмазок или слоя меди (электролитическим способом).

Глубина цементации зависит от времени и температуры выдержки деталей и обычно составляет 0,5—1,5 мм.

Предельная растворимость углерода в поверхностном слое зависит от температуры и определ яется линией SE диаграммы железо—углерод. Обычно цементированные детали содержат в поверхностном слое 0,95—1,1% С.

При газовой цементации в качестве карбюризаторов применяются различные газы и газовые смеси: природные газы, светильный газ, генераторный газ и др. В состав этих газов, кроме уже известной нам окиси углерода, входят углеводороды. Из углеводородов особое значение имеет метан (СН4).

Преимуществами газовой цементации перед цементацией твердым карбюризатором являются сокращение времени процесса (в два-три раза), чистота рабочего места, возможность более точного регулирования процесса. На отечественных завода)? газовая цемендация применяется очень широко.

После цементации детали подвергают закалке и отпуску.

Закалка цементированной стали имеет свои особенности, так как цементация вызывает значительный рост зерна вследствие продолжительной выдержки при высокой температуре; кроме того, распределение углерода по сечению неравномерно.

Для неответственных деталей закалку производят непосредственно из цементационного ящика. В этом случае поверхностный слой детали имеет структуру крупноигольчатого мартенсита, а в сердцевине — крупное зерно доэвтектоидной структуры. После закалки производят низкий отпуск (150—170°).

Более ответственные детали после цементации охлаждают на воздухе л затем закаливают от температуры 850—900° (нагрев выше точки Ас3). При переходе через точки Асх и Ас3 зерна сердцевины и поверхностного слоя измельчаются, и в структуре закаленной детали будут мелкоигольчатый мартенсит (поверхностный слой) и мелкое зерно (сердцевина). Закаленные детали подвергаются низкому отпуску (150—170°).

Для особо ответственных деталей производят двойную закалку. Первая закалка — от температур выше точки Ас3 (850—900°) — имеет целью измельчить структуру сердцевины. Так как для этого нет необходимости в достижении критической скорости, то охлаждение ведут в масле или на воздухе (нормализация). Вторая закалка — от температур выше точки Асх (760—800°) — производится для того, чтобы придать поверхностному слою высокую твердость. В результате второй закалки поверхностный слой приобретает структуру мелкоигольчатого мартенсита, а сердцевина — структуру неполной закалки (сорбит-феррит).

Углеродистая сталь имеет очень большую критическую скорость закалки, и сердцевина деталей, изготовленных из этой стали, независимо от скорости охлаждения будет.иметь структуру перлит + феррит. Поэтому в ответственных деталях, для получения прочной сердцевины (сорбит + феррит), применяют легированную сталь с меньшей критической скоростью закалки.

Азотирование. Азотирование представляет процесс поглощения поверхностным слоем деталей азота, в результате чего этот слой приобретает высокую твердость.

Азотированию подвергают легированную сталь, содержащую алюминий (А1), титан (Ti), вольфрам (W), ванадий (V), молибден (Мо) или хром (Сг), так как азотирование углеродистой стали не дает нужного эффекта. Количество легирующих компонентов обычно составляет 1,5-2%.

Азотирование, подобно газовой цементации, производится в специальных печах при температуре 500—600°. Активный азот, выделяющийся при диссоциации аммиака, диффундирует в деталь с поверхности и вместе с перечисленными специальными элементами, а также с железом образует очень твердые химические соединения — нитриды (A1N, MoN, Fe4N и др.).

Продолжительность выдержки в камере при азотировании составляет 25— 60 час.; в этом основной недостаток азотирования.

Однако азотирование имеет ряд преимуществ перед цементацией. Оно выполняется при сравнительно низкой температуре и не требует последующей закалки. Твердость азотированных изделий значительно превосходит твердость закаленной стали и определяется числом 1100—1200 по Виккерсу, а хрупкость азотированного слоя меньше цементированного и закаленного. Следует отметить также повышенную стойкость азотированных изделий против коррозии и усталости.

Читайте также  Расчет диаметра шкивов

Вследствие этих преимуществ азотирование широко применяется как для стали, так и для чугуна.

Цианирование. Цианирование (процесс поглощения поверхностным слоем изделий одновременно углерода и азота) бывает жидкое и газовое.

Жидкое цианирование производится в ваннах с растворами цианистых солей (NaCN, KCN , Са (CN)2 и др.). При температуре процесса эти соли разлагаются, выделяя активные атомы С и N.

Низкотемпературное (550—600°) цианирование применяется, главным образом, для инструментов из быстрорежущей стали в целях повышения их стойкости и производится в почти чистых цианистых солях (NaCN + KCN ). Высокотемпературное (800—850°) цианирование осуществляется в ваннах, содержащих 20—40-процентнье растворы цианистых солей в нейтральных солях NaCI, Na2C03 и др.; оно применяется для различных изделий так же, как и цементация.

Продолжительность жидкого цианирования колеблется в пределах от 5 мин. до 1 часа.

Недостатком жидкого цианирования является ядовитость цианистых солей, а также их высокая стоимость.

Газовое цианирование отличается от газовой цементации тем, что в состав газа добавляют аммиак, дающий активизированные атомы азота. Газовое цианирование, так же как и жидкое, разделяется на низкотемпературное и высокотемпературное.

При низкотемпературном (500—700°) газовом цианировании преимущественно диффундирует азот (с образованием нитридов), а углерод диффундирует в небольшом количестве. Этот способ, так же как жидкое низкотемпературное цианирование, применяется для обработки инструментов из быстрорежущей стали.

При высокотемпературном (800—850°) газовом цианировании в основном диффундирует углерод с образованием аустьНита, подвергаемого закалке. Преимуществами этого способа перед газовой цементацией являются более низкая температура процесса и меньшая его продолжительность.

Газовое цианирование (называется также нитроцементацией) — новый и более совершенный вид химико-термической обработки; оно получает все большее распространение.

Основными видами термической обработки поковок являются отжиг, нормализация и отпуск. Отжигом называют процесс нагрева стали до одной из температур в интервале превращений, выдержки при этой температуре и последующего медленного охлаждения вместе с печью. В результате перекристаллизации при отжиге структура стали становится равновесной, повышаются ее пластичность и вязкость, снижается твердость и снимаются внутренние напряжения. Отжиг значительно улучшает обрабатываемость металла резанием и необходим для подготовки структуры к последующей термообработке, если она необходима.

В зависимости от температуры нагрева металла различают полный и неполный отжиг. Полный отжиг применяют для поковок из сталей с содержанием углерода более 0,4%, оконченных ковкой при пониженных или повышенных температурах. В первом случае он необходим для устранения полосчатой структуры (сильно вытянутые зерна), а во втором — для устранения крупнозернистости стали. В остальных случаях поковки подвергают неполному отжигу.

Нормализацией называют процесс нагрева стали до температуры выше интервала превращений, выдержки при этой температуре и последующего охлаждения на воздухе. Нормализация улучшает структуру стали, уменьшает внутренние напряжения и повышает механические свойства. Нормализация низко- и среднеуглеродистых сталей (до 0,4% С) заменяет отжиг.

Отпуском называют процесс нагрева металла до температуры ниже интервала превращений, выдержки при этой температуре и охлаждения. Высокий отпуск (650—680 °С) применяют для снижения твердости, улучшения вязкости и пластичности поковок из некоторых марок высоколегированных сталей.

Химико-термическая обработка стали

Существуют различные способы воздействия на сталь с целью придания ей требуемых свойств. Один из комбинированных методов — химико-термическая обработка стали.

Общие принципы

Суть данной технологии состоит в преобразовании внешнего слоя материала насыщением. Химико-термическая обработка металлов и сплавов осуществляется путем выдерживания при нагреве обрабатываемых материалов в средах конкретного состава различного фазового состояния. То есть, это совмещение пластической деформации и температурного воздействия.

Это ведет к изменению параметров стали, в чем состоит цель химико-термической обработки. Таким образом, назначение данной технологии — улучшение твердости, износостойкости, коррозионной устойчивости. В сравнении с прочими технологиями химико-термическая обработка выгодно отличается тем, что при значительном росте прочности пластичность снижается не так сильно.
Основные ее параметры — температура и длительность выдержки.

Рассматриваемый процесс включает три этапа:

  • диссоциацию;
  • адсорбцию;
  • диффузию.

Интенсивность диффузии увеличивается в случае формирования растворов внедрения и снижается, если вместо них формируются растворы замещения.

Количество насыщающего элемента определяется притоком его атомов и скоростью диффузии.

На размер диффузионного слоя влияют температура и длительность выдержки. Данные параметры связаны прямой зависимостью. То есть с ростом концентрации насыщающего элемента возрастает толщина слоя, а повышение интенсивности теплового воздействия приводит к ускорению диффузии, следовательно, за тот же промежуток времени она распространится на большую глубину.

Большое значение для протекания процесса диффузии имеет растворимость в материале обрабатываемой детали насыщающего элемента. В данном случае играют роль пограничные слои. Это объясняется тем, что ввиду наличия у границ зерен множества кристаллических дефектов диффузия происходит более интенсивно. Особенно это проявляется в случае малой растворимости насыщающего элемента в материале. При хорошей растворимости это менее заметно. Кроме того, диффузия ускоряется при фазовых превращениях.

Классификация

Химико-термическая обработка стали подразделяется на основе фазового состояния среды насыщения на жидкую, твердую, газовую.

В первом случае диффузия происходит на фрагментах контакта поверхности предмета со средой. Ввиду низкой эффективности данный способ мало распространен. Твердую фазу обычно используют с целью создания жидких или газовых сред.

Химико-термическая операция в жидкости предполагает помещение предмета в расплав соли либо металла.

При газовом методе элемент насыщения формируют реакции диссоциации, диспропорционирования, обмена, восстановления. Наиболее часто в промышленности для создания газовой и активной газовой сред используют нагрев твердых. Удобнее всего проводить работы в чисто газовой среде ввиду быстрого прогрева, легкого регулирования состава, отсутствия необходимости повторного нагрева, возможности автоматизации и механизации.

Как видно, классификация по фазе среды не всегда отражает сущность процесса, поэтому была создана классификация на основе фазы источника насыщения. В соответствии с ней химико-термическая обработка стали подразделена на насыщение из твердой, паровой, жидкой, газовой сред.

Кроме того, химико-термическая технология подразделена по типу изменения состава стали на насыщение неметаллами, металлами, удаление элементов.

По температурному режиму ее классифицируют на высоко- и низкотемпературную. Во втором случае производят нагрев до аустенитного состояния, а в первом — выше и оканчивают отпуском.

Наконец, химико-термическая обработка деталей включает следующие методы, выделяемые на основе технологии выполнения: цементацию, азотирование, металлизацию, нитроцементацию.

Диффузионная металлизация

Это поверхностное насыщение стали металлами.

Возможно проведение в жидкой, твердой, газовой средах. Твердый метод предполагает использование порошков из ферросплавов. Жидкой средой служит расплав металла (алюминий, цинк и т. д.). Газовый метод предполагает использование хлористых металлических соединений.

Металлизация дает тонкий слой. Это объясняется малой интенсивностью диффузии металлов в сравнении с азотом и углеродом, так как вместо растворов внедрения они формируют растворы замещения.

Такая химико-термическая операция производится при 900 — 1200°С. Это дорогостоящий и длительный процесс.

Основное положительное качество — жаростойкость продуктов. Ввиду этого металлизацию применяют для производства предметов для эксплуатационных температур 1000 — 1200°С из углеродистых сталей.

По насыщающим элементам металлизацию подразделяют на алитирование (алюминием), хромирование, борирование, сицилирование (кремнием).

Первая химико-термическая технология придает материалу стойкость к окалине коррозии, однако на поверхности после нее остается алюминий. Алитирование возможно в порошковых смесях либо в расплаве при меньшей температуре. Второй способ быстрее, дешевле и проще.

Хромирование тоже увеличивает стойкость к коррозии и окалине, а также к воздействию кислот и т. д. У высоко- и среднеуглеродистых сталей оно также улучшает износостойкость и твердость. Данная химико-термическая операция в основном производится в порошковых смесях, иногда в вакууме.

Основное назначение борирования состоит в улучшении стойкости к абразивному износу. Распространена электролизная технология с применением расплавов боросодержащих солей. Существует и безэлектролизный метод, предполагающий использование хлористых солей с ферробором или карбидом бора.

Читайте также  Оборудование для гибки листового металла

Сицилирование увеличивает стойкость к коррозии в соленой воде и кислотах, к износу и окалине некоторых металлов.

Науглероживание (цементация)

Это насыщение поверхности стальных предметов углеродом. Данная операция улучшает твердость, износостойкость, а также выносливость поверхности материала. Нижележащие слои остаются вязкими.

Данная химико-термическая технология подходит для предметов из низкоуглеродистых сталей (0,25%), подверженных контактному износу и переменным нагрузкам.

Предварительно необходима механическая обработка. Не цементируемые участки покрывают слоем меди либо обмазками.

Температурный режим определяется содержанием углерода в стали. Чем оно ниже, тем больше температура. Для адсорбирования углерода и диффузии в любом случае она должна составлять 900 — 950°С и выше.

Таким образом, путем насыщения поверхности стальных деталей углеродом достигают концентрации данного элемента в верхнем слое 0,8 — 1%. Большие значения ведут к повышению хрупкости.

Цементацию осуществляют в среде, называемой карбюризатором. На основе ее фазы технологию подразделяют на газовую, вакуумную, пастами, в твердой среде, ионную.

При первом способе применяют каменноугольный полукокс, древесный уголь, торфяной кокс. С целью ускорения используют активизаторы и повышают температуру. По завершении материал нормализуют. Ввиду длительности и малой производительности данная химико-термическая технология используется в мелкосерийном выпуске.

Вторая технология предполагает использование суспензий, обмазок либо шликеров.

Газовую среду наиболее часто применяют при цементации ввиду скорости, простоты, возможности автоматизации, механизации и достижения конкретной концентрации углерода. В таком случае используют метан, бензол или керосин.

Более совершенный способ — вакуумная цементация. Это двухступенчатый процесс при пониженном давлении. От прочих методов отличается скоростью, равномерностью и светлой поверхностью слоя, отсутствием внутреннего окисления, лучшими условиями производства, мобильностью оборудования.

Ионный метод подразумевает катодное распыление.

Цементация — промежуточная химико-термическая операция. Далее осуществляют закалку и отпуск, определяющие свойства материала, такие как износостойкость, выносливость при контакте и изгибе, твердость. Главный недостаток — длительность.

Азотирование

Данным термином называют насыщение материала азотом. Этот процесс производят в аммиаке при 480 — 650°С.

С легирующими данный элемент формирует нитриды, характеризующиеся дисперсностью, температурной устойчивостью и твердостью.

Такая технология химико-термической обработки увеличивает твердость, стойкость к коррозии и износу.

Необходима предварительная механическая и термическая обработка для придания окончательных размеров. Не азотируемые фрагменты покрывают оловом либо жидким стеклом.

Обычно используют температурный интервал от 500 до 520°С. Это дает за 24 — 90 ч. 0,5 мм слой. Толщина определяется длительностью, составом материала, температурой.

Азотирование приводит к увеличению обрабатываемых деталей вследствие возрастания объема верхнего слоя. Величина роста напрямую определяется его толщиной и температурным режимом.

При жидком способе применяют цианосодержащие, реже бесцианитные и нейтральные соли. Ионная химико-термическая операция отличается повышенной скоростью.

Азотирование подразделяют по целевым свойствам: им достигается или улучшение устойчивости к коррозии, либо повышение стойкости к износу и твердости.

Цианирование, нитроцементация

Это технология насыщения стали азотом и углеродом. Таким способом обрабатывают стали с количеством углерода 0,3 — 0,4%.

Соотношение между углеродом и азотом определяется температурным режимом. С его ростом возрастает доля углерода. В случае пересыщения обоими элементами слой обретает хрупкость.

На размер слоя влияет длительность выдержки и температура.

Цианирование проводится в жидкой и газовой средах. Первый способ называют также нитроцементацией. Кроме того, по температурному режиму оба типа подразделяют на высоко- и низкотемпературные.

При жидком способе используют соли с цианистым натрием. Основной недостаток — их токсичность. Высокотемпературный вариант отличается от цементации быстротой, большими износостойкостью и твердостью, меньшей деформацией материала. Нитроцементация дешевле и безопаснее.

Предварительно производят окончательную механическую обработку, а не подлежащие цианированию фрагменты покрывают слоем меди в 18 — 25 мкм толщиной.

Сульфидирование, сульфоцианирование

Это новая химико-термическая технология, направленная на улучшение износостойкости.

Первый метод состоит в насыщении материала серой и азотом путем нагрева в серноазотистых слоях.

Сульфоцианирование подразумевает насыщение углеродом, помимо названных элементов.

Черчение

Химико- термическая обработка стали

Химико-термическая обработка — это процесс поверхно­стного насыщения стали каким-либо элементом (углеродом, азотом или тем и другим одновременно, а также хромом, кремнием, бором и др. путем диффу­зии элемента из внешней среды при относительно высокой температуре).

Химико-термическая обработка обычно преследует две основные цели: получение более твердой, износоустойчивой поверхности; получение по­верхности, которая была бы устойчива против коррозии.

Наиболее распространенные виды химико-термической обработки стали — цементация, азотирование и цианирование. Некоторые методы упрочения поверхности металлических изделий приведены на рис. 96 (I— индукционная закалка, II — цианирование, III — нитроцементация, IV — газовая цементация, V — цементация, VI — цементация в твердом карбюризаторе, VII — азотирование, VIII —диффузное хроми­рование.

Цементация — процесс поверхностного насыщения стальных дета­лей углеродом, с целью получения изделия с вязкой сердцевиной и твердой поверхностью. Цементации подвергают детали из углеродистой и легиро­ванных сталей с содержанием углерода 0,1 . 0,3%. После цементации по­верхностный слой должен содержать 0,8 . 1,0% углерода. Цементации подвергаются детали, работающие обычно на истирание в условиях удар­ных нагрузок, например зубчатые колеса, шейки коленчатых валов, порш­невые кольца и другие детали машин.

Азотирование — процесс насыщения поверхностных слоев сталь­ных изделий азотом. Этот процесс обеспечивает повышение твердости и изно­состойкости деталей, увеличивает предел усталости, повышает коррозион­ную стойкость. Твердость азотированного слоя обычно сохраняется при на­гревании детали до 450 . 500° С, а поверхностный слой детали после цемен­тации начинает терять твердость уже при 200° С. Азотирование является од­ной из завершающих операций обработки изделий, так как после него изде­лия подвергают только шлифованию. Чтобы придать сердцевине детали оп­ределенную прочность и вязкость, перед азотированием деталь подвергают закалке и отпуску.

Азотирование — дорогой процесс, так как проникновение азота в сталь протекает очень медленно (около 10 ч для получения слоя глубиной 0,1 мм). Чтобы сократить его в 1,5 . 2 раза, прибегают к двухступенчатому на­греву: сначала изделие выдерживают при температуре 510 . 520° С, а затем несколько часов в зависимости от толщины слоя — при температуре 560 . 600° С. Процесс азотирования ускоряется в 6 . 7 раз при нагреве изделий токами высокой частоты.

Азотированию подвергаются в основном легированные стали. Углероди­стые стали азотируют в том случае, когда надо получить поверхностный слой толщиной 0,02 . 0,04 мм для защиты от коррозии. Такое азотирова­ние называют антикоррозийным.

Цианирование — процесс, при котором происходит одновременное на­сыщение поверхностного слоя стали углеродом и азотом.

Этот процесс происходит в ваннах с расплавленными цианистыми соля­ми либо в газовой среде, содержащей метан, аммиак и закись углерода. По­сле ванны детали закаливаются в воде или масле. Цианированный слой тол­щиной 0,2 . 0,3 мм имеет довольно высокую твердость и износостойкость. Цианированию подвергают режущие кромки сверл, резцов, метчиков, фрез, а также некоторые зубчатые колеса автомобилей и др.

9.1. Общие сведения о химико-термической обработке

Химико-термической обработкой называют диффузионное насыщение поверхностных слоёв стали различными элементами. Совместное действие температуры и активной внешней среды позволяет изменить химический состав поверхностных слоёв металла.

Химико-термическую обработку применяют для повышения твёрдости, износостойкости, сопротивления усталости, а также для защиты от электрохимической и газовой коррозии.

Химико-термическая обработка обычно сочетается с термической обработкой и либо предшествует, либо следует за ней.

Основными преимуществами химико-термической обработки являются возможность сравнительно легко регулировать качество поверхностного слоя и создавать значительный градиент свойств от поверхности к сердцевине, а также получать упрочнённые слои весьма малой толщины.

Недостатком этого вида обработки является значительная длительность процесса, а, следовательно, и большая себестоимость упрочнения.

Химико-термическая обработка может производиться в твёрдых, жидких и газообразных средах, богатых теми элементами, которыми насыщаются поверхности стали.

Обязательным условием процесса является выделение необходимых элементов в атомарном виде, когда они приобретают достаточную химическую активность и способность диффундировать в поверхностные слои металла.

Процесс химико-термической обработки состоит из трёх элементарных стадий:

1) диссоциации (распада) активной среды
2) адсорбции активных атомов элемента на поверхности стали
3) диффузии адсорбированных атомов в глубь металла.

Читайте также  Как открутить болт с сорванными гранями

На первой стадии протекают химические реакции в исходной (окружающей) среде, в результате которых диффундирующие элементы выделяются в химически активном атомарном состоянии.

На второй стадии процесса эти атомы усваиваются насыщаемой поверхностью металла, т.е. происходит адсорбция диффундирующих элементов, в результате чего тончайший поверхностный слой насыщается диффундирующим элементом.

На третьей стадии имеет место диффузионное проникновение выделившихся атомов элемента в кристаллическую решётку стали, которое сопровождается образованием твёрдых растворов или химических соединений.

Первая и вторая стадии процесса химико-термической обработки протекает значительно быстрее третьей – диффузионной стадии, где формируется структура и свойства диффузионной зоны. Поэтому скорость химико-термической обработки определяет третья стадия.

Основными технологическими факторами, определяющими скорость диссоциации, толщину диффузионного слоя и концентрацию насыщающего элемента являются состав активной среды, температура и время выдержки. Контроль результатов химико-термической обработки производится обычно путём измерения твёрдости поверхностных слоёв, что может служить качественной характеристикой степени насыщения. Глубину диффузионного слоя можно определить визуально по виду излома специальных образцов (свидетелей), проходящих обработку совместно с деталями.

Наиболее распространёнными операциями химико-термической обработки стали являются цементация, азотирование, нитроцементация или цианирование и диффузионная металлизация.

Химико-термическая обработка стали

Железоуглеродистые сплавы (сталь, чугун) являются сложными сплавами, состоящими из различных веществ, называемых компонентами сплава. При переходе сплава из жидкого состояния в твердое могут получаться различные виды взаимодействия его компонентов, в результате чего образуется та или иная структура, т. е. внутреннее строение сплава.

В зависимости от изменения структуры стали изменяются ее механические и другие свойства. Для изменения внутреннего строения стали ее подвергают термической обработке. Процесс термической (т. е. тепловой) обработки стали сводится к трем последовательным операциям: нагреванию металла до определенной температуры, выдержке при этой температуре в течение некоторого времени и охлаждению.

Термическая обработка стали. Основными видами термической обработки стали являются отжиг, нормализация, закалка и отпуск.

Рекламные предложения на основе ваших интересов:

Отжиг применяется в тех случаях, когда нужно изменить крупнозернистую структуру стали, т. е. измельчить зерно и сделать структуру мелкозернистой, чем снижается твердость, улучшается обрабатываемость стали режущим инструментом, снимаются внутренние напряжения в деталях. При отжиге стальную деталь нагревают до температуры 750—860° С и после выдержки медленно охлаждают вместе с печью.

Нормализация преследует те же цели, что и отжиг. Отличием ее от отжига является большая скорость охлаждения стальных деталей после нагрева и выдержки. При нормализации температура нагрева на 30—50° С выше, чем при отжиге, а охлаждение производится на спокойном воздухе. Благодаря этому нормализованные детали имеют более высокую твердость, а пластичность их меньше. Нормализация способствует образованию в стали более мелкого зерна, чем при отжиге.

Закалка применяется в тех случаях, когда нужно повысить прочность, упругость и твердость стали. При закалке сталь нагревают в горне, в термической печи или током высокой частоты в индукторе до температуры 750—860° С, выдерживают некоторое время при этой температуре, после чего быстро охлаждают в воде, масле или на воздухе. В зависимости от скорости охлаждения в стали образуются новые мелкозернистые структуры.

Отпуском называется вид термической обработки, заключающийся в нагреве закаленной стали до температуры 150— 670° С, выдержке при этой температуре и последующем медленном охлаждении в воде или на воздухе. Отпуск в зависимости от температуры нагрева бывает трех видов: низкий, средний и высокий. Низкий отпуск производится при температуре 150—250° С. Такой отпуск главным образом снимает внутренние напряжения, а высокая твердость и износостойкость детали сохраняются. Низкий отпуск применяют для инструментальных сталей.

Средний отпуск осуществляется при нагреве стальных деталей до температуры 350—480° С. При среднем отпуске повышается предел прочности и упругость. Этот отпуск применяют при обработке пружин, рессор и штампов, а также ударного инструмента.

Высокий отпуск осуществляют при нагреве закаленных стальных деталей до температуры 480—670° С, применяют его для обработки деталей, изготовленных из улучшенной конструкционной стали. Такому отпуску подвергают шатуны, шатунные болты, передние оси автомобилей и т. п.

Температуру нагрева деталей при термической обработке определяют специальными приборами, называемыми пирометрами. При отсутствии пирометров температуру нагрева металла можно определить грубо на глаз по цветам каления и по цветам побежалости стали.

При нагревании сталь окисляется и на ее поверхности появляются пленки окислов, которые приобретают различную окраску, зависящую от толщины пленки и температуры нагрева. Такая окраска металла при нагревании называется цветом побежалости. При температуре свыше 330° С цвета побежалости исчезают.

При нагревании стали до температуры выше указанной цвет металла также изменяется в зависимости от температуры. Цвет стали при нагреве выше 330° С называется цветом каления. В табл. 4 и 5 приведены цвета каления и цвета побежалости стали, соответствующие температурам нагрева.

Химико-термическая обработка стали. При химико-термической обработке стали изменяется химический состав и структура поверхностного слоя стали под действием температуры и среды. Химико-термическая обработка повышает поверхностную твердость стали и применяется для повышения износостойкости трущихся поверхностей, стойкости против коррозии и жаростойкости при сохранении достаточной вязкости и упругости сердцевины.

В зависимости от того, каким элементом насыщается поверхностный слой детали, различают следующие виды химико-термической обработки: цементация, азотирование, цианирование, али-тирование и др.

Цементацией называется процесс поверхностного науглероживания стали. Существуют три вида цементации: твердыми карбюризаторами, газовая и жидкостная. Цементация твердыми карбюризаторами заключается в том, что детали из малоуглеродистых сталей (с содержанием углерода не более 0,25%) укладывают в цементационные стальные ящики, пересыпают науглероживающим веществом (карбюризатором, который состоит из древесного угля и углекислых солей бария), затем герметически закрывают и устанавливают в специальную печь. В печи детали нагревают до температуры 900—980 °С и выдерживают при этой температуре в течение нескольких часов, затем медленно охлаждают, после чего детали подвергают нормализации, закалке, отпуску.

Для равномерного науглероживания поверхности деталей перед цементацией тщательно очищают от ржавчины, грязи и масла. Участки поверхностей, не подлежащие цементации, предохраняют различными способами: омеднением гальваническим способом или обмазыванием различными пастами. Отверстия деталей набивают изолирующей массой, состоящей из асбеста, слюды и окалины.

При газовой цементации применяют газы, содержащие углерод (природный, нефтяной, светильный и др.).

Жидкостную цементацию проводят в соляных ваннах, в состав которых входят соли: цианистый натрий, поваренная соль, хлористый барий и углекислый натрий.

Азотирование представляет собой процесс насыщения азотом поверхностного слоя детали. Азотированная сталь имеет высокую твердость поверхностного слоя и большую стойкость против коррозии. Азотированию подвергают главным образом легированные стали. Детали, подлежащие азотированию, обрабатывают сначала механически, а затем подвергают закалке и отпуску. Подготовленные детали укладывают в муфель электрической печи, который герметически закрывается. В муфель подается аммиак. При температуре 480—520 °С аммиак разлагается на азот и водород. Процесс азотирования продолжается от 30 до 80 ч.

Цианирование — такой вид химико-термической обработки, при которой поверхностный слой стальной детали насыщается одновременно углеродом и азотом. Цианирование проводят в жидкой или газовой среде. Жидкостное цианирование осуществляют нагревом стальных деталей в расплавленных цианистых солях, а газовое цианирование — в газовой среде, которая состоит из смеси аммиака и газов, содержащих углерод. Цианирование проводится при температуре 800—860 °С.

Алитирование —это процесс насыщения поверхностного слоя стальных деталей алюминием.

Поверхность деталей, обработанных методом алитирования, приобретает высокие жаропрочность и твердость. Алитированные детали могут работать длительное время при высоких температурах (800—1000 °С), не снижая жаростойкости и твердости. Наибольшее распространение получил способ алитирования в твердой среде. Детали, подлежащие алитированию, укладывают в стальные ящики, пересыпают алитирующими порошками (ферроалю-миниевый или ферроалюминиевомедный сплав и хлористый аммоний) нагревают до температуры 950—1050 °С и выдерживают в течение 4—12 ч. После алитирования детали подвергаются отжигу при температуре 950—1000 °С с выдержкой от 3 до 6 ч.